IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i8p2480-2497.html
   My bibliography  Save this article

Integrated production quality and condition-based maintenance optimisation for a stochastically deteriorating manufacturing system

Author

Listed:
  • Abdelhakim Khatab
  • Claver Diallo
  • El-Houssaine Aghezzaf
  • Uday Venkatadri

Abstract

This paper investigates the problem of optimally integrating production quality and condition-based maintenance in a stochastically deteriorating single- product, single-machine production system. Inspections are periodically performed on the system to assess its actual degradation status. The system is considered to be in ‘fail mode’ whenever its degradation level exceeds a predetermined threshold. The proportion of non-conforming items, those that are produced during the time interval where the degradation is beyond the specification threshold, are replaced either via overtime production or spot market purchases. To optimise preventive maintenance costs and at the same time reduce production of non-conforming items, the degradation of the system must be optimally monitored so that preventive maintenance is carried out at appropriate time intervals. In this paper, an integrated optimisation model is developed to determine the optimal inspection cycle and the degradation threshold level, beyond which preventive maintenance should be carried out, while minimising the sum of inspection and maintenance costs, in addition to the production of non-conforming items and inventory costs. An expression for the total expected cost rate over an infinite time horizon is developed and solution method for the resulting model is discussed. Numerical experiments are provided to illustrate the proposed approach.

Suggested Citation

  • Abdelhakim Khatab & Claver Diallo & El-Houssaine Aghezzaf & Uday Venkatadri, 2019. "Integrated production quality and condition-based maintenance optimisation for a stochastically deteriorating manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2480-2497, April.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:8:p:2480-2497
    DOI: 10.1080/00207543.2018.1521021
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1521021
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1521021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Wei Jiang & Jianzhong Zhou & Yanhe Xu & Jie Liu & Yahui Shan, 2019. "Multistep Degradation Tendency Prediction for Aircraft Engines Based on CEEMDAN Permutation Entropy and Improved Grey–Markov Model," Complexity, Hindawi, vol. 2019, pages 1-18, October.
    4. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Boumallessa, Zeineb & Chouikhi, Houssam & Elleuch, Mounir & Bentaher, Hatem, 2023. "Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:8:p:2480-2497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.