IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i3p703-721.html
   My bibliography  Save this article

A data-driven approach for the optimisation of product specifications

Author

Listed:
  • Lei Zhang
  • Xuening Chu
  • Hansi Chen
  • Bo Yan

Abstract

In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone’s specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user’s preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.

Suggested Citation

  • Lei Zhang & Xuening Chu & Hansi Chen & Bo Yan, 2019. "A data-driven approach for the optimisation of product specifications," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 703-721, February.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:3:p:703-721
    DOI: 10.1080/00207543.2018.1480843
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1480843
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1480843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yongjun & Wang, Lizheng & Li, Feng, 2021. "A data-driven prediction approach for sports team performance and its application to National Basketball Association," Omega, Elsevier, vol. 98(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:3:p:703-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.