IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i9p3204-3225.html
   My bibliography  Save this article

Modelling and optimization of a bi-objective flow shop scheduling with diverse maintenance requirements

Author

Listed:
  • Javad Seif
  • Andrew Junfang Yu
  • Fahimeh Rahmanniyay

Abstract

In real-world problems, machines cannot continuously operate and have to stop for maintenance before they fail. Lack of maintenance can also affect the performance of machines in processing jobs. In this paper, a permutation flow shop scheduling problem with multiple age-based maintenance requirements is modelled as a novel mixed-integer linear program in which the objectives are conflicting. In modelling the problem, we assume that infrequent maintenance can prolong job processing times. One of the objectives is to minimise the total maintenance cost by planning as few maintenance activities as possible to only meet the minimum requirements, and the other objective tries to minimise the total tardiness by sequencing the jobs and planning the maintenance activities in such a way that the processing times are not prolonged and unnecessary maintenance times are avoided. Because of this conflict, an interactive fuzzy, bi-objective model is introduced. Application of the model is illustrated through a case study for operations and maintenance scheduling of heavy construction machinery. An effective and efficient solution methodology is developed based on the structure of the problem and tested against commercial solvers and a standard GA. Computational results have verified the efficiency of the proposed solution methodology and show that unlike the proposed method, a generic metaheuristic that does not consider the unique structure of the problem can become ineffective for real-world problem sizes.

Suggested Citation

  • Javad Seif & Andrew Junfang Yu & Fahimeh Rahmanniyay, 2018. "Modelling and optimization of a bi-objective flow shop scheduling with diverse maintenance requirements," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3204-3225, May.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3204-3225
    DOI: 10.1080/00207543.2017.1403660
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1403660
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1403660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    2. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Javad Seif & Mohammad Dehghanimohammadabadi & Andrew Junfang Yu, 2020. "Integrated preventive maintenance and flow shop scheduling under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 852-887, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:9:p:3204-3225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.