IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i5p2076-2098.html
   My bibliography  Save this article

Flow shop scheduling with grid-integrated onsite wind power using stochastic MILP

Author

Listed:
  • Konstantin Biel
  • Fu Zhao
  • John W. Sutherland
  • Christoph H. Glock

Abstract

Over the last decade, manufacturing companies have identified renewable energy as a promising means to cope with time-varying energy prices and to reduce energy-related greenhouse gas emissions. As a result of this development, global installed capacity of wind power has expanded significantly. To make efficient use of onsite wind power generation facilities in manufacturing, production scheduling tools need to consider the uncertainty attached to wind power generation along with changes in the energy procurement cost and in the products’ environmental footprints. To this end, we propose a solution procedure that first generates a large number of wind power scenarios that characterise the variability in wind power over time. Subsequently, a two-stage stochastic optimisation procedure computes a production schedule and energy supply decisions for a flow shop system. In the first stage, a bi-objective mixed integer linear programme simultaneously minimises the total weighted flow time and the expected energy cost, based on the generated wind power scenarios. In the second stage, energy supply decisions are adjusted based on real-time wind power data. A numerical example is used to illustrate the ability of the developed decision support tool to handle the uncertainty attached to wind power generation and its effectiveness in realising energy-related objectives in manufacturing.

Suggested Citation

  • Konstantin Biel & Fu Zhao & John W. Sutherland & Christoph H. Glock, 2018. "Flow shop scheduling with grid-integrated onsite wind power using stochastic MILP," International Journal of Production Research, Taylor & Francis Journals, vol. 56(5), pages 2076-2098, March.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:5:p:2076-2098
    DOI: 10.1080/00207543.2017.1351638
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1351638
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1351638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:5:p:2076-2098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.