IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i4p1620-1641.html
   My bibliography  Save this article

Travel-time model of dual-command cycles in a 3D compact AS/RS with lower mid-point I/O dwell point policy

Author

Listed:
  • Xianhao Xu
  • Yeming (Yale) Gong
  • Xiangxiang Fan
  • Guwen Shen
  • Bipan Zou

Abstract

Three-dimensional compact automated storage/retrieval systems (AS/RS) have been extensively applied in warehouses, with advantages of full automation, time efficiency and high space utilisation. While previous studies that use lower mid-point input/output (I/O) dwell point policy consider single-command cycles (SC), this paper builds travel-time models of dual-command cycles (DC). The S/R crane also dwells in the lower mid-point of the rack when it is idle. We validate analytical models using simulation and use analytical models to optimise system dimensions. Numerical experiments are used to compare DC with SC. The results show that DC outperform SC in terms of cycle time of one command.

Suggested Citation

  • Xianhao Xu & Yeming (Yale) Gong & Xiangxiang Fan & Guwen Shen & Bipan Zou, 2018. "Travel-time model of dual-command cycles in a 3D compact AS/RS with lower mid-point I/O dwell point policy," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1620-1641, February.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1620-1641
    DOI: 10.1080/00207543.2017.1361049
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1361049
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1361049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamzaoui, Mohammed A. & Arbaoui, Taha & Yalaoui, Farouk & Sari, Zaki, 2021. "An exact optimization method based on dominance properties for the design of AS/RSs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    2. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1620-1641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.