IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i4p1521-1532.html
   My bibliography  Save this article

Bayesian reliability analysis of a products of probabilities model for parallel systems with dependent components

Author

Listed:
  • Shi-Woei Lin
  • Yi-Ting Liu
  • Mohammad Adam Jerusalem

Abstract

In a Bayesian reliability analysis of a system with dependent components, an aggregate analysis (i.e. system-level analysis) or a simplified disaggregate analysis with independence assumptions may be preferable if the estimations obtained from employing these two approaches do not deviate substantially from those derived through a disaggregate analysis, which is generally considered the most accurate method. This study was conducted to identify the key factors and their range of values that lead to estimation errors of great magnitude. In particular, a copula-based Bayesian reliability model was developed to formulate the dependence structure for a products of probabilities model of a simple parallel system. Monte Carlo simulation, regionalised sensitivity analysis and classification tree learning were employed to investigate the key factors. The resulting classification tree achieved favourable predictive accuracy. Several decision rules suggesting the optimal approach under different combinations of conditions were also extracted. This study has made a methodological contribution in laying the groundwork for investigating systems with dependent components using copula-based Bayesian reliability models. With regard to practical implications, this study also derived useful guidelines for selecting the most appropriate analysis approach under different scenarios with different magnitude of dependence.

Suggested Citation

  • Shi-Woei Lin & Yi-Ting Liu & Mohammad Adam Jerusalem, 2018. "Bayesian reliability analysis of a products of probabilities model for parallel systems with dependent components," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1521-1532, February.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1521-1532
    DOI: 10.1080/00207543.2017.1358468
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1358468
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1358468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lechang & Wang, Pidong & Wang, Qiang & Bi, Sifeng & Peng, Rui & Behrensdorf, Jasper & Beer, Michael, 2021. "Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1521-1532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.