IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i4p1504-1520.html
   My bibliography  Save this article

Identification of patterns in control charts for processes with statistically correlated noise

Author

Listed:
  • Héctor De la Torre Gutiérrez
  • Duc Truong Pham

Abstract

In real industrial scenarios, if the quality characteristics of a continuous or batch production process are monitored using Shewhart control charts, there could be a large number of false alarms about the process going out of control. This is because these control charts assume that the inherent noise of the monitored process is normally, independently and identically distributed, although the assumption of independence is not always correct for continuous and batch production processes. This paper presents three control chart pattern recognition systems where the inherent disturbance is assumed to be stationary. The systems use the first-order autoregressive (AR(1)), moving-average (MA(1)) and autoregressive moving-average (ARMA(1,1)) models. A special pattern generation scheme is adopted to ensure generality, randomness and comparability, as well as allowing the further categorisation of the studied patterns. Two different input representation techniques for the recognition systems were studied. These gave nearly the same performance for the MA(1) and ARMA(1,1) models, while the raw data yielded the highest accuracies when AR(1) was used. The effect of autocorrelation on the pattern recognition capabilities of the developed models was studied. It was observed that Normal and Upward Shift patterns were the most affected.

Suggested Citation

  • Héctor De la Torre Gutiérrez & Duc Truong Pham, 2018. "Identification of patterns in control charts for processes with statistically correlated noise," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1504-1520, February.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1504-1520
    DOI: 10.1080/00207543.2017.1360530
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1360530
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1360530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuehjen E. Shao & Yu-Ting Hu, 2020. "Using Machine Learning Classifiers to Recognize the Mixture Control Chart Patterns for a Multiple-Input Multiple-Output Process," Mathematics, MDPI, vol. 8(1), pages 1-14, January.
    2. Cang Wu & Huijuan Hou & Chunli Lei & Pan Zhang & Yongjun Du, 2023. "A Novel Scheme of Control Chart Patterns Recognition in Autocorrelated Processes," Mathematics, MDPI, vol. 11(16), pages 1-16, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:4:p:1504-1520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.