IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i16p5522-5540.html
   My bibliography  Save this article

Optimised scheduling in human–robot collaboration – a use case in the assembly of printed circuit boards

Author

Listed:
  • Karin Bogner
  • Ulrich Pferschy
  • Roland Unterberger
  • Herwig Zeiner

Abstract

Advances in the technologies of sensors and lightweight robots increasingly enable direct physical interaction between humans and robots. This so-called human–robot collaboration is supposed to offer more flexibility in production processes, as opposed to fully automated processes. The aim of this contribution is to describe an integer linear programming model which optimally coordinates the distribution of tasks between humans and robots in a realistic production process of printed circuit boards (PCBs), where the objective is to minimise the completion time of a board. In addition, we discuss an extended case wherein a whole set of different boards is to be assembled, which is highly relevant for low volume production with a high degree of customisation. After stating an extended integer linear programming (ILP) formulation, we propose two practical approaches for solving the computationally more complex second scenario: an order-based heuristic approach and a matheuristic applying a truncated variant of the ILP model with different sequencing strategies. The computational evaluation based on a real-world use case from the PCB industry underlines the efficacy of the matheuristic approach for obtaining a good overall makespan.

Suggested Citation

  • Karin Bogner & Ulrich Pferschy & Roland Unterberger & Herwig Zeiner, 2018. "Optimised scheduling in human–robot collaboration – a use case in the assembly of printed circuit boards," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5522-5540, August.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5522-5540
    DOI: 10.1080/00207543.2018.1470695
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1470695
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1470695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:16:p:5522-5540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.