IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i8p2336-2350.html
   My bibliography  Save this article

Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment

Author

Listed:
  • Mario José Basallo-Triana
  • Jesús Andrés Rodríguez-Sarasty
  • Hernán Darío Benitez-Restrepo

Abstract

In several industries, global competition, increasing customer expectations and technological innovations tend to accelerate product life-cycles. In this changing environment, traditional forecasting methods tend to be ineffective as a consequence of the transient and highly uncertain demand of short life-cycle products (SLCP), and the scarcity of sales data. To address this challenge, we present a methodology to forecast SLCP demand using time series of similar products referred to as analogies. Linear regression and clustering techniques are used for the selection and weighting of suitable analogies. The proposed methodology is tested against seven analogue-based forecasting methods, including two implementations of non-linear regression methods. In different sets of time series, our methodology attained more accurate forecasts with short processing times compared with state-of-the-art methods. Such results reveal promising applications of combined regression and clustering techniques as simple and effective forecasting tools for supporting replenishment decisions for SLCP.

Suggested Citation

  • Mario José Basallo-Triana & Jesús Andrés Rodríguez-Sarasty & Hernán Darío Benitez-Restrepo, 2017. "Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2336-2350, April.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:8:p:2336-2350
    DOI: 10.1080/00207543.2016.1241443
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1241443
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1241443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
    2. Elalem, Yara Kayyali & Maier, Sebastian & Seifert, Ralf W., 2023. "A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1874-1894.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:8:p:2336-2350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.