IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i5p1400-1418.html
   My bibliography  Save this article

A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes

Author

Listed:
  • Mahesh Mani
  • Brandon M. Lane
  • M. Alkan Donmez
  • Shaw C. Feng
  • Shawn P. Moylan

Abstract

Additive manufacturing technologies are increasingly used in the development of new products. However, variations in part quality in terms of material properties, dimensional tolerances, surface roughness and defects limit its broader acceptance. Process control today based on heuristics and experimental data yields limited improvement in part quality. In an effort to identify the needed measurement science for real-time closed-loop control of additive manufacturing (AM) processes, this paper presents a literature review on the current AM control schemes, process measurements and modelling and simulation methods as it applies to the powder bed fusion process, though results from other processes are reviewed where applicable. We present our research findings to identify the correlations between process parameters, process signatures and product quality. We also present research recommendations on the key control issues to serve as a technical basis for standards development in this area. Complimentary details to this paper with summary tables, range of values, preliminary correlations and correlation figures can be accessed from a National Institute of Standards and Technology Report (http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8036.pdf). This paper is developed based on the report.

Suggested Citation

  • Mahesh Mani & Brandon M. Lane & M. Alkan Donmez & Shaw C. Feng & Shawn P. Moylan, 2017. "A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1400-1418, March.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:5:p:1400-1418
    DOI: 10.1080/00207543.2016.1223378
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1223378
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1223378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    2. Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.
    3. Yuval Cohen & Gonen Singer, 2021. "A smart process controller framework for Industry 4.0 settings," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1975-1995, October.
    4. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:5:p:1400-1418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.