Author
Listed:
- Thomas D. Hedberg
- Nathan W. Hartman
- Phil Rosche
- Kevin Fischer
Abstract
Design for manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within computer-aided design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customisation on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is: How can manufacturing knowledge, depending on its definition, be used earlier in the product life cycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behaviour and context characteristics of a product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product life cycle.
Suggested Citation
Thomas D. Hedberg & Nathan W. Hartman & Phil Rosche & Kevin Fischer, 2017.
"Identified research directions for using manufacturing knowledge earlier in the product life cycle,"
International Journal of Production Research, Taylor & Francis Journals, vol. 55(3), pages 819-827, February.
Handle:
RePEc:taf:tprsxx:v:55:y:2017:i:3:p:819-827
DOI: 10.1080/00207543.2016.1213453
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:3:p:819-827. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.