IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i17p5037-5049.html
   My bibliography  Save this article

Recommender systems using cluster-indexing collaborative filtering and social data analytics

Author

Listed:
  • Kyoung-jae Kim
  • Hyunchul Ahn

Abstract

As a result of the extensive variety of products available in e-commerce settings during the last decade, recommender systems have been highlighted as a means of mitigating the problem of information overload. Collaborative filtering (CF) is the most widely used algorithm to build such systems, and improving the predictive accuracy of CF-based recommender systems has been a major research challenge. This research aims to improve the prediction accuracy of CF by incorporating social network analysis (SNA) and clustering techniques. Our proposed model identifies the most influential people in an online social network by SNA and then conducts clustering analysis using these people as initial centroids (cluster centres). Finally, the model makes recommendations using cluster-indexing CF based on the clustering outcomes. In this step, our model adjusts the effect of neighbours in the same cluster as the target user to improve prediction accuracy by reflecting hidden information about his or her social community. The experimental results indicate that the proposed model outperforms other comparison models, including conventional CF, with statistical significance.

Suggested Citation

  • Kyoung-jae Kim & Hyunchul Ahn, 2017. "Recommender systems using cluster-indexing collaborative filtering and social data analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5037-5049, September.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:17:p:5037-5049
    DOI: 10.1080/00207543.2017.1287443
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1287443
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1287443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chao & Ding, Yi & Hu, Weihao & Jiang, Yi & Li, Yongzhen, 2021. "Cost-Based attraction recommendation for tour operators under stochastic demand," Omega, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:17:p:5037-5049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.