IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i11p3092-3109.html
   My bibliography  Save this article

Optimal scheduling for sequentially connected cluster tools with dual-armed robots and a single input and output module

Author

Listed:
  • Dae-Kyu Kim
  • Hyun-Jung Kim
  • Tae-Eog Lee

Abstract

We examine a cyclic scheduling problem of sequentially connected cluster tools with a single input and output module, which includes multi-cluster tools and linear cluster tools. Every component tool has a dual-armed robot, and chambers are parallelised for a long process step. An intermediate buffer between each pair of adjacent component tools has a limited capacity, and all processed wafers should return to the input and output module. To examine the scheduling problem, we first compute workloads of the process steps and robots to obtain a lower bound on the tool cycle time. We then identify a rule of assigning the chambers to the process steps that makes the tool cycle time independent of the order of using the parallel chambers. We also propose a simple robot task sequence which is modified from the well-known swap sequence for each component tool. We prove that the modified swap sequence is optimal when one of the process steps, not a robot, is the bottleneck. We also present a scheduling strategy which controls robot task timings to deal with interference of wafer flows between each pair of adjacent component tools. Finally, we perform numerical experiments to show the performance of the proposed sequence.

Suggested Citation

  • Dae-Kyu Kim & Hyun-Jung Kim & Tae-Eog Lee, 2017. "Optimal scheduling for sequentially connected cluster tools with dual-armed robots and a single input and output module," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3092-3109, June.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:11:p:3092-3109
    DOI: 10.1080/00207543.2016.1243819
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1243819
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1243819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Jung Kim & Jun-Ho Lee, 2021. "Cyclic robot scheduling for 3D printer-based flexible assembly systems," Annals of Operations Research, Springer, vol. 298(1), pages 339-359, March.
    2. Qingyun Yu & Haolin Yang & Kuo-Yi Lin & Li Li, 2021. "A self-organized approach for scheduling semiconductor manufacturing systems," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 689-706, March.
    3. Fatemi-Anaraki, Soroush & Tavakkoli-Moghaddam, Reza & Foumani, Mehdi & Vahedi-Nouri, Behdin, 2023. "Scheduling of Multi-Robot Job Shop Systems in Dynamic Environments: Mixed-Integer Linear Programming and Constraint Programming Approaches," Omega, Elsevier, vol. 115(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:11:p:3092-3109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.