IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i22p6860-6878.html
   My bibliography  Save this article

A discrete artificial bee colony algorithm for single machine scheduling problems

Author

Listed:
  • Alkın Yurtkuran
  • Erdal Emel

Abstract

This paper presents a discrete artificial bee colony algorithm for a single machine earliness–tardiness scheduling problem. The objective of single machine earliness–tardiness scheduling problems is to find a job sequence that minimises the total sum of earliness–tardiness penalties. Artificial bee colony (ABC) algorithm is a swarm-based meta-heuristic, which mimics the foraging behaviour of honey bee swarms. In this study, several modifications to the original ABC algorithm are proposed for adapting the algorithm to efficiently solve combinatorial optimisation problems like single machine scheduling. In proposed study, instead of using a single search operator to generate neighbour solutions, random selection from an operator pool is employed. Moreover, novel crossover operators are presented and employed with several parent sets with different characteristics to enhance both exploration and exploitation behaviour of the proposed algorithm. The performance of the presented meta-heuristic is evaluated on several benchmark problems in detail and compared with the state-of-the-art algorithms. Computational results indicate that the algorithm can produce better solutions in terms of solution quality, robustness and computational time when compared to other algorithms.

Suggested Citation

  • Alkın Yurtkuran & Erdal Emel, 2016. "A discrete artificial bee colony algorithm for single machine scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6860-6878, November.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:22:p:6860-6878
    DOI: 10.1080/00207543.2016.1185550
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1185550
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1185550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiajun Zhou & Xifan Yao, 2017. "A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4765-4784, August.
    2. Hongli Yu & Yuelin Gao & Le Wang & Jiangtao Meng, 2020. "A Hybrid Particle Swarm Optimization Algorithm Enhanced with Nonlinear Inertial Weight and Gaussian Mutation for Job Shop Scheduling Problems," Mathematics, MDPI, vol. 8(8), pages 1-17, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:22:p:6860-6878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.