IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i1p336-364.html
   My bibliography  Save this article

Grammatical evolution in developing optimal inventory policies for serial and distribution supply chains

Author

Listed:
  • Michael Phelan
  • Seán McGarraghy

Abstract

Recently, there has been a growing literature on biologically inspired algorithms, particularly genetic algorithms and genetic programming, applied to supply chain modelling and inventory control optimisation. Due to the rigidity of the genetic algorithms approach, it is difficult to change the underlying model logic and add richness to the supply chain. While genetic programming provides a more flexible approach than that provided by genetic algorithms, to date its application has been limited to small supply chain modelling problems in relation to optimal inventory policies. This research applies Grammatical Evolution, a relatively new biologically inspired algorithm, to the field of supply chain optimisation, employing human readable rules called grammars. These grammars provide a single mechanism to describe a variety of complex structures and can incorporate the domain knowledge of the practitioner to bias the algorithm towards regions of the search space containing better solutions. Results are presented showing Grammatical Evolution is at least competitive in cost terms, and superior in flexibility, with these methods applicable to any supply chain of the serial or distribution type. Furthermore, Grammatical Evolution shows an adaptive ability that augurs well for supply chains in dynamic environments, such as disruption.

Suggested Citation

  • Michael Phelan & Seán McGarraghy, 2016. "Grammatical evolution in developing optimal inventory policies for serial and distribution supply chains," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 336-364, January.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:1:p:336-364
    DOI: 10.1080/00207543.2015.1085653
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1085653
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1085653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McGarraghy, Seán & Olafsdottir, Gudrun & Kazakov, Rossen & Huber, Élise & Loveluck, William & Gudbrandsdottir, Ingunn Y. & Čechura, Lukáš & Esposito, Gianandrea & Samoggia, Antonella & Aubert, Pierre-, 2022. "Conceptual system dynamics and agent-based modelling simulation of interorganisational fairness in food value chains: Research agenda and case studies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2).
    2. Seán McGarraghy & Gudrun Olafsdottir & Rossen Kazakov & Élise Huber & William Loveluck & Ingunn Y. Gudbrandsdottir & Lukáš Čechura & Gianandrea Esposito & Antonella Samoggia & Pierre-Marie Aubert & Da, 2022. "Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisational Fairness in Food Value Chains: Research Agenda and Case Studies," Agriculture, MDPI, vol. 12(2), pages 1-30, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:1:p:336-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.