IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i17p5271-5282.html
   My bibliography  Save this article

To select or to combine? The inventory performance of model and expert forecasts

Author

Listed:
  • Xun Wang
  • Fotios Petropoulos

Abstract

Demand forecasting is a crucial input of any inventory system. The quality of the forecasts should be evaluated not only in terms of forecast accuracy or bias but also with regards to their inventory implications, which include the impact on the total inventory cost, the achieved service levels and the variance of orders and inventory. Forecast selection and combination are two very widely applied forecasting strategies that have shown repeatedly to increase the forecasting performance. However, the inventory performance of these strategies remains unexplored. We empirically examine the effects of forecast selection and combination on inventory when two sources of forecasts are available. We employ a large data-set that contains demands and (statistical and judgmental) forecasts for multiple pharmaceutical stock keeping units. We show that forecast selection and simple combination increase simultaneously the forecasting and inventory performance.

Suggested Citation

  • Xun Wang & Fotios Petropoulos, 2016. "To select or to combine? The inventory performance of model and expert forecasts," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5271-5282, September.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:17:p:5271-5282
    DOI: 10.1080/00207543.2016.1167983
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1167983
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1167983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Sagaert, Yves R. & Kourentzes, Nikolaos & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "Incorporating macroeconomic leading indicators in tactical capacity planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 12-19.
    4. Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
    5. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    6. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    7. Oksana Hoshovska & Zhanna Poplavska & Natalia Kryvinska & Natalia Horbal, 2020. "Considering Random Factors in Modeling Complex Microeconomic Systems," Mathematics, MDPI, vol. 8(8), pages 1-18, July.
    8. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    9. Gu Pang & Bartosz Gebka, 2017. "Forecasting container throughput using aggregate or terminal-specific data? The case of Tanjung Priok Port, Indonesia," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2454-2469, May.
    10. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    12. Bruzda, Joanna, 2020. "Demand forecasting under fill rate constraints—The case of re-order points," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1342-1361.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:17:p:5271-5282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.