IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i11p3187-3200.html
   My bibliography  Save this article

An adaptive step-down procedure for fault variable identification

Author

Listed:
  • Jinho Kim
  • Myong K. Jeong
  • Elsayed A. Elsayed
  • K.N. Al-Khalifa
  • A.M.S. Hamouda

Abstract

In a process with a large number of process variables (high-dimensional process), identifying which variables cause an out-of-control signal is a challenging issue for quality engineers. In this paper, we propose an adaptive step-down procedure using conditional T -super-2 statistic for fault variable identification. While existing procedures focus on selecting variables that have strong evidence of a change, the proposed step-down procedure selects a variable having the weakest evidence of a change at each step based on the variables that are selected in previous steps. The information of selected unchanged variables is effectively utilised in obtaining a powerful conditional T -super-2 test statistic for identifying the changed elements of the mean vector. The proposed procedure is designed to utilise the correlation information between fault and non-fault variables for the efficient fault variables identification. Further, the simulation results show that the proposed procedure has the better diagnostic performance compared with existing methods in terms of fault variable identification and computational complexity, especially when the number of the variables is high and the number of fault variables is small.

Suggested Citation

  • Jinho Kim & Myong K. Jeong & Elsayed A. Elsayed & K.N. Al-Khalifa & A.M.S. Hamouda, 2016. "An adaptive step-down procedure for fault variable identification," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3187-3200, June.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:11:p:3187-3200
    DOI: 10.1080/00207543.2015.1076948
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1076948
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1076948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuehjen E. Shao & Shih-Chieh Lin, 2019. "Using a Time Delay Neural Network Approach to Diagnose the Out-of-Control Signals for a Multivariate Normal Process with Variance Shifts," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    2. Chia-Ding Hou & Rung-Hung Su, 2024. "An Outlier Detection Approach to Recognize the Sources of a Process Failure within a Multivariate Poisson Process," Mathematics, MDPI, vol. 12(18), pages 1-10, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:11:p:3187-3200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.