IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i24p7517-7532.html
   My bibliography  Save this article

A novel intelligent approach for predicting atherosclerotic individuals from big data for healthcare

Author

Listed:
  • Mohan Priya
  • Paulraj Ranjith Kumar

Abstract

Atherosclerosis is a condition in human circulatory, where the arteries become narrowed and hardened due to accumulation of plaque around artery wall. The growth of the disease is slow and asymptomatic. Currently, imaging methods are applied for predicting the disease progression; however, they are deficient in the required resolution and sensitivity for detection. In this work, clinical observations and habits of individuals are considered for assorting the pathologic community. Intelligent machine learning technique, decision tree forest is used for assorting the individuals. A case study was made in this work regarding the atherosclerosis disease progression and crucial features were extracted. Optimised missing value imputation strategy, iterative principal component analysis for STULONG data-set and efficient feature subset selection method, hybrid fast correlation-based filter (FCBF) have been employed for extracting the relevant features and ignoring the redundant features. Further proceeding with the methodology, our work has outperformed with extreme overall accuracy of about 99.47% compared with other state-of-the-art machine learning techniques.

Suggested Citation

  • Mohan Priya & Paulraj Ranjith Kumar, 2015. "A novel intelligent approach for predicting atherosclerotic individuals from big data for healthcare," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7517-7532, December.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:24:p:7517-7532
    DOI: 10.1080/00207543.2015.1087655
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1087655
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1087655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benzidia, Smail & Makaoui, Naouel & Bentahar, Omar, 2021. "The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    2. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    3. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    4. Imran Ali & Devika Kannan, 2022. "Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review," Annals of Operations Research, Springer, vol. 315(1), pages 29-55, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:24:p:7517-7532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.