IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v53y2015i19p5896-5911.html
   My bibliography  Save this article

An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time

Author

Listed:
  • Kai Zhou Gao
  • Ponnuthurai Nagaratnam Suganthan
  • Quan Ke Pan
  • Mehmet Fatih Tasgetiren

Abstract

This study addresses flexible job shop scheduling problem (FJSP) with fuzzy processing time. The fuzzy or uncertainty of processing time is one of seven characteristics in remanufacturing. A discrete harmony search (DHS) algorithm is proposed for FJSP with fuzzy processing time. The objective is to minimise maximum fuzzy completion time. A simple and effective heuristic rule is proposed to initialise harmony population. Extensive computational experiments are carried out using five benchmark cases with eight instances from remanufacturing. The proposed heuristic rule is evaluated using five benchmark cases. The proposed DHS algorithm is compared to six metaheuristics. The results and comparisons show the effectiveness and efficiency of DHS for solving FJSP with fuzzy processing time.

Suggested Citation

  • Kai Zhou Gao & Ponnuthurai Nagaratnam Suganthan & Quan Ke Pan & Mehmet Fatih Tasgetiren, 2015. "An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5896-5911, October.
  • Handle: RePEc:taf:tprsxx:v:53:y:2015:i:19:p:5896-5911
    DOI: 10.1080/00207543.2015.1020174
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1020174
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1020174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kai & Qin, Hu & Huang, Yun & Luo, Mengwen & Zhou, Lei, 2021. "Surgery scheduling in outpatient procedure centre with re-entrant patient flow and fuzzy service times," Omega, Elsevier, vol. 102(C).
    2. Mohammad Nasir & Ali Sadollah & Przemyslaw Grzegorzewski & Jin Hee Yoon & Zong Woo Geem, 2021. "Harmony Search Algorithm and Fuzzy Logic Theory: An Extensive Review from Theory to Applications," Mathematics, MDPI, vol. 9(21), pages 1-46, October.
    3. Md Ashikur Rahman & Rajalingam Sokkalingam & Mahmod Othman & Kallol Biswas & Lazim Abdullah & Evizal Abdul Kadir, 2021. "Nature-Inspired Metaheuristic Techniques for Combinatorial Optimization Problems: Overview and Recent Advances," Mathematics, MDPI, vol. 9(20), pages 1-32, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:53:y:2015:i:19:p:5896-5911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.