IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v46y2008i20p5589-5606.html
   My bibliography  Save this article

Capacity and material requirement planning modelling by comparing deterministic and fuzzy models

Author

Listed:
  • J. Mula
  • R. Poler
  • J. P. Garcia-Sabater

Abstract

A model for the capacity and material requirement planning problem with uncertainty in a multi-product, multi-level and multi-period manufacturing environment is proposed. An optimization model is formulated which takes into account the uncertainty that exists in both the market demand and capacity data, and the uncertain costs for backlog. This work uses the concept of possibilistic programming by comparing trapezoidal fuzzy numbers. Such an approach makes it possible to model the ambiguity in market demand, capacity data, cost information, etc. that could be present in production planning systems. The main goal is to determine the master production schedule, stock levels, backlog, and capacity usage levels over a given planning horizon in such a way as to hedge against the uncertainty. Finally, the fuzzy model and the deterministic model adopted as the basis of this work are compared using real data from an automobile seat manufacturer. The paper concludes that fuzzy numbers could improve the solution of production planning problems.

Suggested Citation

  • J. Mula & R. Poler & J. P. Garcia-Sabater, 2008. "Capacity and material requirement planning modelling by comparing deterministic and fuzzy models," International Journal of Production Research, Taylor & Francis Journals, vol. 46(20), pages 5589-5606, January.
  • Handle: RePEc:taf:tprsxx:v:46:y:2008:i:20:p:5589-5606
    DOI: 10.1080/00207540701413912
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207540701413912
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207540701413912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    2. Manuel Díaz-Madroñero & Josefa Mula & Mariano Jiménez & David Peidro, 2017. "A rolling horizon approach for material requirement planning under fuzzy lead times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2197-2211, April.
    3. Mula, Josefa & Peidro, David & Poler, Raul, 2010. "The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 128(1), pages 136-143, November.
    4. Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:46:y:2008:i:20:p:5589-5606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.