IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v9y2015i4p312-324.html
   My bibliography  Save this article

Hybrid approach using simulation-based optimisation for job shop scheduling problems

Author

Listed:
  • K Kulkarni
  • J Venkateswaran

Abstract

In this paper, we present a hybrid modelling approach and formulation using simulation-based optimisation (SbO) for solving complex problems, viz., job shop scheduling. The classical job shop scheduling problem is NP-Hard. Traditionally, the problem is modelled as a Mixed-Integer Programming (MIP) model and solved using exact algorithms (branch-and-bound, branch-and-cut, etc) or using meta-heuristics (Genetic Algorithm, Particle Swarm Optimisation, etc). In our hybrid SbO approach, we propose a modified formulation of the scheduling problem where the operational aspects of the job shop are captured only in the simulation model. Two new decision variables, controller delays and queue priorities, are introduced. The performances of the MIP-based approach and the proposed hybrid approach are compared through the number of decision variables, run time and the objective values for select deterministic benchmark problem instances. The results clearly indicate that the hybrid approach outperforms the traditional MIP for all large-scale problems, resulting in solutions closer to optimum in a much lesser computational time. Interestingly, it is also observed that the introduction of an ‘error’ term in the objective of the deterministic problem improves performance. Finally, the performance of the proposed SbO approach is analysed for stochastic job shops.

Suggested Citation

  • K Kulkarni & J Venkateswaran, 2015. "Hybrid approach using simulation-based optimisation for job shop scheduling problems," Journal of Simulation, Taylor & Francis Journals, vol. 9(4), pages 312-324, November.
  • Handle: RePEc:taf:tjsmxx:v:9:y:2015:i:4:p:312-324
    DOI: 10.1057/jos.2014.40
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/jos.2014.40
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jos.2014.40?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:9:y:2015:i:4:p:312-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.