IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v8y2014i1p76-90.html
   My bibliography  Save this article

On the use of artificial neural networks in simulation-based manufacturing control

Author

Listed:
  • S Bergmann
  • S Stelzer
  • S Strassburger

Abstract

The automatic generation of simulation models has been a recurring research topic for several years. In manufacturing industries, it is currently also becoming a topic of high practical relevance. A well-known challenge in most model generation approaches is the correct reproduction of the dynamic behaviour of model elements, for example, buffering or control strategies. This problem is especially relevant in simulation-based manufacturing control. In such scenarios, simulation models need to reflect the current state and behaviour of the real system in a highly accurate way, otherwise its suggested control decisions may be inaccurate or even dangerous towards production goals. This paper introduces a novel methodology for approximating dynamic behaviour using artificial neural networks, rather than trying to determine exact representations. We suggest using neural networks in conjunction with traditional material flow simulation systems whenever a certain decision cannot be made ex ante in the model generation process due to insufficient knowledge about the behaviour of the real system. In such cases the decision is delegated to the neural network, which is connected to the simulation system at runtime. Training of the neural network is performed by observation of the real systems decision and based on the evaluation of data that can be gained through production data acquisition. Our approach has certain advantages compared to other approaches and is especially well suited in the context of on-line simulation and simulation-based operational decision support. We demonstrate the applicability of our methodology using a case study and report on performance results.

Suggested Citation

  • S Bergmann & S Stelzer & S Strassburger, 2014. "On the use of artificial neural networks in simulation-based manufacturing control," Journal of Simulation, Taylor & Francis Journals, vol. 8(1), pages 76-90, February.
  • Handle: RePEc:taf:tjsmxx:v:8:y:2014:i:1:p:76-90
    DOI: 10.1057/jos.2013.6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/jos.2013.6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jos.2013.6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:8:y:2014:i:1:p:76-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.