IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v8y2014i1p37-49.html
   My bibliography  Save this article

A motion planning method for simulating a virtual crowd

Author

Listed:
  • M Xiong
  • S Tang

Abstract

A model of motion planning for agent-based crowd simulation is one of the key techniques for simulating how an agent selects its velocity to move towards a given goal in each simulation time step. If there is no on-coming collision with other agents or obstacles around, the agent moves towards the designated goal directly with the desired speed and direction. However, the desired velocity may lead the agent to collide with other agents or obstacles, especially in a crowded scenario. In this case, the agent needs to adjust its velocity to avoid potential collisions, which is the main issue that a motion planning model needs to consider. This paper proposes a method for modelling how an agent conducts motion planning to generate velocity for agent-based crowd simulation, including collision detection, valid velocity set determination, velocity sampling, and velocity evaluation. In addition, the proposed method allows the agent to really collide with other agents. Hence, a rule-based model is applied to simulate how the agent makes a response and recovers from the collision. Simulation results from the case study indicate that the proposed motion planning method can be adapted to different what-if simulation scenarios and to different types of pedestrians. The performance of the model has been proven to be efficient.

Suggested Citation

  • M Xiong & S Tang, 2014. "A motion planning method for simulating a virtual crowd," Journal of Simulation, Taylor & Francis Journals, vol. 8(1), pages 37-49, February.
  • Handle: RePEc:taf:tjsmxx:v:8:y:2014:i:1:p:37-49
    DOI: 10.1057/jos.2013.11
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/jos.2013.11
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jos.2013.11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:8:y:2014:i:1:p:37-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.