IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v13y2019i2p138-151.html
   My bibliography  Save this article

Day-ahead and online decision-making for collaborative on-site logistics

Author

Listed:
  • Fabian Dunke
  • Stefan Nickel

Abstract

Recent developments in the information and communications technology (ICT) sector allow companies to utilise wireless networking devices at comparatively low costs. These technologies facilitate improved decision-making through sharing data between spatially decentralised agents, processing these data collaboratively by a central computer, and propagating recommendations back to agents. We consider an application for integrated optimisation: To serve orders for chemicals, a company needs to match logistics and production processes. Trucks arrive at the site main gate where they may be buffered before being sent to the station for loading. We present optimisation methods (mixed-integer programming models and online heuristics) for coordinating site entry at the gate with the current situation at the station. Optimisation approaches are implemented in a discrete-event simulation model and checked for profitability compared to conventional methods without data sharing. The paper shows how simulation and optimisation can be combined to assess data sharing technologies within logistics environments.

Suggested Citation

  • Fabian Dunke & Stefan Nickel, 2019. "Day-ahead and online decision-making for collaborative on-site logistics," Journal of Simulation, Taylor & Francis Journals, vol. 13(2), pages 138-151, April.
  • Handle: RePEc:taf:tjsmxx:v:13:y:2019:i:2:p:138-151
    DOI: 10.1080/17477778.2018.1485616
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17477778.2018.1485616
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17477778.2018.1485616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:13:y:2019:i:2:p:138-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.