IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v12y2018i4p1-25.html
   My bibliography  Save this article

Simulating attacker and defender strategies within a dynamic game on network topology

Author

Listed:
  • Jared K. Nystrom
  • Matthew J. Robbins
  • Richard F. Deckro
  • James F. Morris

Abstract

Successful military counterinsurgency operations increasingly rely upon an advanced understanding of relevant networks and their topologies. This paper evaluates, via simulations, various attacker and defender strategies within a dynamic game on network topology. The simulation is designed to provide insight into the effectiveness of offensive targeting strategies as determined by various centrality measures, given limited states of information and varying network topologies. Improved modeling of complex social behaviors is accomplished through incorporation of a distance-based utility function. Moreover, insights into effective defensive strategies are gained through incorporation of a hybrid model of network regeneration. Two designed experiments investigate the impact of game features on the superlative offensive and defensive strategies. Results indicate that degree centrality, proximal target centrality, and closeness centrality outperform other measures as targeting criteria given varying network topologies and defensive regeneration methods. Furthermore, the attacker state of information is only significant given a topology conducive to defense. The costs of direct relationships significantly impact effective regeneration methods, whereas restructuring methods are insignificant. These results offer preliminary insight into practical attack and defense strategies utilizing a simulation that can be easily adapted for operational applications.

Suggested Citation

  • Jared K. Nystrom & Matthew J. Robbins & Richard F. Deckro & James F. Morris, 2018. "Simulating attacker and defender strategies within a dynamic game on network topology," Journal of Simulation, Taylor & Francis Journals, vol. 12(4), pages 1-25, October.
  • Handle: RePEc:taf:tjsmxx:v:12:y:2018:i:4:p:1-25
    DOI: 10.1057/s41273-017-0054-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/s41273-017-0054-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41273-017-0054-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jun & Zhu, Jiaxing & Liang, Guangchuan & Ma, Junjie & He, Jiayi & Du, Penghua & Ye, Zhanpeng, 2024. "Three-layer and robust planning models to evaluate the strategies of defense layer, attack layer, and operation layer for optimal protection in natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:12:y:2018:i:4:p:1-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.