IDEAS home Printed from https://ideas.repec.org/a/taf/tjsmxx/v11y2017i3p253-266.html
   My bibliography  Save this article

A lightweight container-based virtual time system for software-defined network emulation

Author

Listed:
  • Jiaqi Yan
  • Dong Jin

Abstract

Container-based network emulation offers high fidelity and a scalable testing environment to bridge the gap between research ideas and real-world network applications. However, containers take their notions of time from the physical system clock, and thus the time-stamped events from different containers are multiplexed to reflect the scheduling serialization by the Linux operating system. Conjoining the emulator and other simulators is also challenging due to the difficulties of synchronizing the virtual simulation clock with the physical system clock. Virtual time systems for network emulation shed light on both issues. In this paper, we develop a lightweight container-based virtual time system in Linux Kernel. We use time dilation to trade time with system resources by precisely scaling the time of interactions between containers and physical devices. We develop a time freezer to enable the precise pause and resume of an emulation experiment, which offers the virtual time support to interface with simulators for close synchronization. We integrate the virtual time system into a software-defined networking emulator, Mininet, and evaluate the system accuracy, scalability, and overhead. Finally, we use the virtual-time-enabled emulation testbed to conduct a case study of equal-cost multi-path routing protocol analysis in a data center network.

Suggested Citation

  • Jiaqi Yan & Dong Jin, 2017. "A lightweight container-based virtual time system for software-defined network emulation," Journal of Simulation, Taylor & Francis Journals, vol. 11(3), pages 253-266, August.
  • Handle: RePEc:taf:tjsmxx:v:11:y:2017:i:3:p:253-266
    DOI: 10.1057/s41273-016-0043-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1057/s41273-016-0043-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41273-016-0043-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjsmxx:v:11:y:2017:i:3:p:253-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjsm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.