IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v74y2023i2p465-475.html
   My bibliography  Save this article

Modelling intermittent time series and forecasting COVID-19 spread in the USA

Author

Listed:
  • Giacomo Sbrana

Abstract

Forecasting intermittent time series represents a challenging task whose importance increases together with the number of series sporadically observed. However, given the difficulties in modelling the presence of zeros, few methods are available. This article introduces a novel state-space approach defined as Intermittent Local Level (ILL). Our approach allows integrating the intermittent nature of time series and forecasting efficiently. Indeed, the proposed state-space model assumes a Bernoulli dynamics that allows switching between zeros and positive values. Moreover, we derive the unobserved dynamics of the time series and provide a simple method for estimating and forecasting. In addition, our approach allows deriving prediction intervals for intermittent observations.Finally, we compare our method’s performance with those of standard intermittent models as well as other benchmarks, using the daily number of new cases of COVID-19 observed in nearly 3000 American counties. Predicting the number of newly infected people is important, not only for hospitals but also for policy makers in general. Empirical results show that the suggested approach clearly outperforms the Croston model and its variants when forecasting the number of new Coronavirus cases over a two-week period. In addition, it compares well with non-intermittent benchmarks both in point forecast and prediction intervals.

Suggested Citation

  • Giacomo Sbrana, 2023. "Modelling intermittent time series and forecasting COVID-19 spread in the USA," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(2), pages 465-475, February.
  • Handle: RePEc:taf:tjorxx:v:74:y:2023:i:2:p:465-475
    DOI: 10.1080/01605682.2022.2055499
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2022.2055499
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2022.2055499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:74:y:2023:i:2:p:465-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.