Author
Abstract
Many heuristics and meta-heuristics problem-solving methods have been proposed so far to solve the NP-hard multi-satellite collection scheduling problem (m-SatCSP). In particular, genetic algorithms (GAs), well-suited for large scale problems, its simplicity and low cost implementation have been pervasive. However, most contributions largely emphasise simple variant or basic GA principles promotion, overlooking prior problem structure exploitation or potential problem-solving benefits that may be conveyed from similar combinatorial optimisation problems such as the vehicle routing problem with time windows (VRPTW). In fact, despite some recognised similarity with VRPTW and early investigation on limited exact methods, few efforts have been successfully reported to adapt efficient advanced special-purpose problem-solving techniques to m-SatCSP. In this paper, a VRPTW-based hybrid genetic algorithm is proposed to tackle the single objective static m-SatCSP. The advocated approach combines and adapts well-known routing heuristics knowledge with standard genetic operator principles to efficiently explore promising search regions, manage constraint handling and improve solution quality. The hybrid strategy co-evolves two populations of solution plan individuals, maximising expected collection value while concurrently densifying collection paths to minimise orbit demand. Computational results show the approach to be cost-effective and competitive in comparison to some recent methods inspired from the best reported m-SatCSP heuristics.
Suggested Citation
M. Barkaoui & J. Berger, 2020.
"A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(9), pages 1390-1410, September.
Handle:
RePEc:taf:tjorxx:v:71:y:2020:i:9:p:1390-1410
DOI: 10.1080/01605682.2019.1609891
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:71:y:2020:i:9:p:1390-1410. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.