Author
Listed:
- Ana Alexandra A. F. Martins
- Margarida G. M. S. Cardoso
Abstract
When evaluating a clustering solution, we often have to compare alternative solutions – e.g., to address clustering stability or external validity. Each comparison essentially relies on a contingency table referring to a pair of (crisp) clustering solutions. These data is commonly used as an input to: (1) an assignment problem, to match the clusters of the two partitions; (2) determine several indices of agreement; (3) represent the two partitions in a two-dimensional map resorting to Correspondence Analysis. We propose using the Multidimensional Unfolding (MDU) technique to picture the cross-classification data between two partitions, complementing a clustering evaluation analysis and overcoming some limitations of the traditional approaches (1) to (3). This approach relies on a new similarity measure that excludes agreement between clusters due to chance alone. The resulting MDU map is very easy to interpret, picturing agreement between clustering solutions: the further apart are the clusters (represented by points) from the two partitions, the larger the (Euclidean) distances between the corresponding points. Two applications illustrate the relevance of this approach: an application to a data set on UCI Machine Learning Repository to access clustering external validity; and an application to greenhouse gas emissions data to address the temporal stability of clustering solutions, the clusters of European countries, which have homogeneous sources of pollutant emissions, being compared over three years.
Suggested Citation
Ana Alexandra A. F. Martins & Margarida G. M. S. Cardoso, 2020.
"Picturing agreement between clustering solutions using multidimensional unfolding: An application to greenhouse gas emissions data,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(2), pages 195-208, February.
Handle:
RePEc:taf:tjorxx:v:71:y:2020:i:2:p:195-208
DOI: 10.1080/01605682.2018.1549648
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:71:y:2020:i:2:p:195-208. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.