Author
Listed:
- Sonia Valeria Avilés-Sacoto
- Wade D. Cook
- David Güemes-Castorena
- Joe Zhu
Abstract
Data envelopment analysis (DEA) is a methodology for evaluating the relative efficiencies of a set of decision-making units (DMUs). It is commonly assumed that the DMUs are independent of one another, in that each has its own quantities of a set of inputs and outputs. In case this assumption of independence of DMUs holds, decreasing the inputs of one DMU will not affect the inputs of others. The current paper moves beyond the conventional framework and examines a problem setting where there is an interdependence among the DMUs. Consider the case where the members of a given subgroup of DMUs have an input in common, such as would be the case if a set of highway maintenance crews in a district are under the jurisdiction of a district supervisor and district-level resources. The efficiency measurement difficulty created by this “shared’ resource phenomenon is that in attempting to move an inefficient crew towards the frontier by reducing that shared resource (hence penalising that crew), the other crews in that same district will be equally penalised. Specifically, decreasing district resources in relation to their impact on a maintenance crew will cause that resource to decrease as well for other members of the same group. The conventional (input-oriented) DEA model that does not cater for such interdependence situations will fail to address this important issue. To capture this interdependence, we develop a new DEA-like methodology. One of the properties of this new methodology is that its production possibility set cannot be defined in the same manner as in the conventional DEA setting. This is due to the fact that when the DMU under evaluation is projected towards the frontier, the input/output structures of the other units in the same group are altered, unlike the conventional situation where the structures of the other DMUs remain fixed. We apply this new methodology to the problem of evaluating a set of departments in a university setting, where the departments are grouped under various faculties.
Suggested Citation
Sonia Valeria Avilés-Sacoto & Wade D. Cook & David Güemes-Castorena & Joe Zhu, 2020.
"Measuring efficiency in DEA in the presence of common inputs,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(11), pages 1710-1722, November.
Handle:
RePEc:taf:tjorxx:v:71:y:2020:i:11:p:1710-1722
DOI: 10.1080/01605682.2019.1630329
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:71:y:2020:i:11:p:1710-1722. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.