IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v70y2019i8p1296-1307.html
   My bibliography  Save this article

Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations

Author

Listed:
  • Zaiwu Gong
  • Xiao Tan
  • Yingjie Yang

Abstract

The priority weight vectors of an intuitionistic fuzzy preference relation (IFPR) with linear uncertainty distribution characteristics in group decision making (GDM) are determined in this study. On the basis of an IFPR, the assumptions of additive consistency and decision-making preference variables obeying the uncertainty distribution are defined. Afterward, a priority model is constructed with a chance constraint, and the ranking relations of the membership and non-membership matrices are analysed. The change in the confidence level of the chance constraint controls the flexibility of realising additive consistency. Moreover, it is proven that if the individual decision makers’ IFPR has a linear distribution, the group IFPR aggregated by the weighted methodology still obeys this distribution. Finally, an uncertain linear ranking consensus model of the IFPR is developed, and a numerical example is used to verify its feasibility.

Suggested Citation

  • Zaiwu Gong & Xiao Tan & Yingjie Yang, 2019. "Optimal weighting models based on linear uncertain constraints in intuitionistic fuzzy preference relations," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(8), pages 1296-1307, August.
  • Handle: RePEc:taf:tjorxx:v:70:y:2019:i:8:p:1296-1307
    DOI: 10.1080/01605682.2018.1489349
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2018.1489349
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2018.1489349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:70:y:2019:i:8:p:1296-1307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.