IDEAS home Printed from https://ideas.repec.org/a/taf/tjorxx/v70y2019i1p67-80.html
   My bibliography  Save this article

Bias in Balance Optimization Subset Selection: Exploration through examples

Author

Listed:
  • Hee Youn Kwon
  • Jason J. Sauppe
  • Sheldon H. Jacobson

Abstract

When estimating a treatment effect from observational data, researchers encounter bias regardless of estimation methods. In this paper, we focus on a particular method of estimation called Balance Optimization Subset Selection (BOSS). This paper investigates all the possible cases that may lead to bias in the context of BOSS, provides examples for those cases and tries to mitigate the bias. While doing so, we define a balance hierarchy and a correct imbalance measure which corresponds to the form of the response functions. In addition, new imbalance measures drawn from the Cramer-von Mises test statistic are introduced. The cases of insufficient data and suboptimality that can arise in causal analysis with BOSS are also presented.

Suggested Citation

  • Hee Youn Kwon & Jason J. Sauppe & Sheldon H. Jacobson, 2019. "Bias in Balance Optimization Subset Selection: Exploration through examples," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(1), pages 67-80, January.
  • Handle: RePEc:taf:tjorxx:v:70:y:2019:i:1:p:67-80
    DOI: 10.1080/01605682.2017.1421848
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01605682.2017.1421848
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01605682.2017.1421848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    2. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjorxx:v:70:y:2019:i:1:p:67-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.