IDEAS home Printed from https://ideas.repec.org/a/taf/tjmaxx/v11y2024i2p228-246.html
   My bibliography  Save this article

Self-organizing maps: a novel approach to identify and map business clusters

Author

Listed:
  • Francis Bowen
  • Janaína Siegler

Abstract

Business cluster identification is an essential topic for helping understand regional and global supply chains and establishing economic policies and logistics. This work aims to leverage the benefits of self-organizing maps (SOM), combined with traditional clustering algorithms and image processing techniques, to identify business clusters that are described by high-dimensionality feature vectors. It is advantageous over previous work because the algorithm is unsupervised and makes no assumptions about the number of clusters for a given feature set. The proposed algorithm was evaluated using recent datasets for US metropolitan cities from the Indiana Business Research Center (Innovation 2.0) and the Occupational Employment Statistics Survey. Data involving innovation metrics, education levels, economic well-being, connectivity, local GDP, and STEM are aggregated to demonstrate the effectiveness of the proposed neural network. The clustering results are compared to traditional approaches, including K-means clustering, both quantitatively and qualitatively. The unsupervised nature of the proposed SOM approach, and the acceptable computational complexity of the overall algorithm, suggests that self-organizing maps offer several advantages over traditional methods. In this work, we present a novel architecture coupling a SOM model with processing techniques for automatically identifying business clusters derived from high-dimensionality feature vectors, the first use case of SOMs in business cases affecting supply chains and other economic decisions. Preliminary results confirm the viability of architecture as an unsupervised approach for identifying business clusters.

Suggested Citation

  • Francis Bowen & Janaína Siegler, 2024. "Self-organizing maps: a novel approach to identify and map business clusters," Journal of Management Analytics, Taylor & Francis Journals, vol. 11(2), pages 228-246, April.
  • Handle: RePEc:taf:tjmaxx:v:11:y:2024:i:2:p:228-246
    DOI: 10.1080/23270012.2024.2306628
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23270012.2024.2306628
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23270012.2024.2306628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tjmaxx:v:11:y:2024:i:2:p:228-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tjma .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.