Author
Listed:
- Sathya Bama B
- Bevish Jinila Y
Abstract
Computer-assisted Parkinson’s disease-specific gait pattern recognition has gained more attention in the past decade due to its extensive application. In this research study, vision-based gait feature extraction is obtained from the observed skeleton points to support the real-time Parkinson disease prediction and diagnosis in the smart healthcare environment. So, a novel kernel-based principal component analysis (KPCA) is introduced for establishing respective feature extraction and dimensionality reduction on the patient’s video data. In this research study, a vision-based Parkinson disease identification system (VPDIS) is developed with a feature-weighted minimum distance classifier model to support the clinical assessment of Parkinson’s disease. At the time of experimentation, a steady-state walking style of the patient was captured using the cameras fixed in the smart healthcare environment. Then, the accumulated walking frames from the remote patients were transformed into the required binary silhouettes for the sake of noise minimisation and compression purpose. The resulting experimentation shows that the proposed feature extraction approach has significant improvements on the recognition of target gait patterns from the video-based gait analysis of Parkinson’s and normal patients. Accordingly, the proposed VPDIS using feature-weighted minimum distance classifier model provides better prediction time and classification accuracy against the existing healthcare systems that is developed using support vector machine and ensemble learning classifier models.
Suggested Citation
Sathya Bama B & Bevish Jinila Y, 2024.
"Vision-based gait analysis for real-time Parkinson disease identification and diagnosis system,"
Health Systems, Taylor & Francis Journals, vol. 13(1), pages 62-72, January.
Handle:
RePEc:taf:thssxx:v:13:y:2024:i:1:p:62-72
DOI: 10.1080/20476965.2022.2125838
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:thssxx:v:13:y:2024:i:1:p:62-72. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/thss .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.