Author
Listed:
- Ibrahim Sadek
- Bessam Abdulrazak
Abstract
Sleep is so important, particularly for the elderly. The lack of sleep may increase the risk of cognitive decline. Similarly, it may also increase the risk of Alzheimer’s disease. Nonetheless, many people underestimate the importance of getting enough rest and sleep. In-laboratory polysomnography is the gold-standard method for assessing the quality of sleep. This method is considered impractical in the clinical environment, seen as labour-intensive and expensive owing to its specialised equipment, leading to long waiting lists. Hence, user-friendly (remote and non-intrusive) devices are being developed to help patients monitor their sleep at home. In this paper, we first discuss commercially-available non-wearable devices that measure sleep, in which we highlight the features associated with each device, including sensor type, interface, outputs, dimensions, power supply, and connectivity. Second, we evaluate the feasibility of a non-wearable device in a free-living environment. The deployed device comprises a sensor mat with an integrated micro-bending multimode fibre. Raw sensor data were gathered from five senior participants living in a senior activity centre over a few to several weeks. We were able to analyse the participants’ sleep quality using various sleep parameters deduced from the sensor mat. These parameters include the wake-up time, bedtime, the time in bed, nap time. Vital signs, namely heart rate, respiratory rate, and body movements, were also reported to detect abnormal sleep patterns. We have employed pre-and post-surveys reporting each volunteer’s sleep hygiene to confirm the proposed system’s outcomes for detecting the various sleep parameters. The results of the system were strongly correlated with the surveys for reporting each sleep parameter. Furthermore, the system proved to be highly effective in detecting irregular patterns that occurred during sleep.
Suggested Citation
Ibrahim Sadek & Bessam Abdulrazak, 2023.
"Contactless remote monitoring of sleep: evaluating the feasibility of an under-mattress sensor mat in a real-life deployment,"
Health Systems, Taylor & Francis Journals, vol. 12(3), pages 264-280, July.
Handle:
RePEc:taf:thssxx:v:12:y:2023:i:3:p:264-280
DOI: 10.1080/20476965.2022.2072777
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:thssxx:v:12:y:2023:i:3:p:264-280. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/thss .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.