Author
Listed:
- Tawseef Ayoub Shaikh
- Rashid Ali
Abstract
The paper proposes a hybrid metaheuristic algorithm known as harmony search and simulated annealing (HS-SA) for accurate and precise breast malignancy disclosure by integrating harmony search (HS) and simulated annealing (SA) optimisation methods. An enhanced wavelet-based contourlet transform (WBCT) procedure for mining the highlights of the region of interest (ROI) is explored, that allows execution upgradation over other standard procedures. The anticipated HS-SA algorithm aims to reduce the feature dimensions and assemble at the unparalleled optimal feature subset. The SVM classifier fed with the picke.d feature subsets and assisted by varied kernel functions upheld its classification capacities in contrast with the conformist machine learning classification and optimisation methods. The portrayed computer-aided diagnosis (CAD) model is confronted by evaluating its learning capability on two different breast mammographic datasets i) benchmark BCDR-F03 dataset and ii) local mammographic dataset. Preliminary propagations, experimental outcomes, and quantifiable assessments likewise demonstrate that the proposed model is pragmatic and favourable for the automated breast malignancy findings with optimal performance and fewer overheads. The discoveries show that the proposed CAD system (HS-SA+Kernel SVM) is superior to various characterisation accuracy techniques with an accuracy of 99.89% for the local mammographic dataset and 99.76% for benchmark BCDR-F03 dataset, AUC of 99.41% for the local mammographic dataset and 99.21% for reference BCDR-F03 dataset while keeping the element space restricted to only seven feature subsets and computational prerequisites as low as is judicious.
Suggested Citation
Tawseef Ayoub Shaikh & Rashid Ali, 2022.
"An automated machine learning tool for breast cancer diagnosis for healthcare professionals,"
Health Systems, Taylor & Francis Journals, vol. 11(4), pages 303-333, October.
Handle:
RePEc:taf:thssxx:v:11:y:2022:i:4:p:303-333
DOI: 10.1080/20476965.2021.1966324
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:thssxx:v:11:y:2022:i:4:p:303-333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/thss .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.