Author
Listed:
- Mohamed Elhefnawy
- Kyoung-Hun Kim
- Wang-Sang Lee
Abstract
This paper introduces an innovative antenna configuration that incorporates multiple quarter-wavelength transmission line segments. Additionally, it presents a mathematical framework for modeling the proposed antenna and deriving an expression for its input impedance, thereby investigating the effects of various parameters on its bandwidth. The design of the proposed antenna utilizes an asymmetric coplanar waveguide (ACPW) due to its ease of implementation without the need for vias. Furthermore, the implementation of ACPW results in parasitic coplanar capacitances, which are used to tune the resonance modes of the proposed antenna, thereby extending its bandwidth. Curved corners are incorporated into the proposed antenna, and characteristic mode analysis (CMA) is used to investigate the effect of these curved corners on the significant modes and radiation pattern. The proposed antenna has electrical dimensions of $ 0.3\lambda _{0} \times \ 0.25\lambda _{0} \times \ 0.007\lambda _{0} $ 0.3λ0×0.25λ0×0.007λ0 at a frequency of 2.29 GHz. The antenna prototype has been fabricated and measured. The measured −10 dB fractional bandwidths are 48.1% (from 2.29 to 3.74 GHz), 30.5% (from 5.19 to 7.06 GHz), 7.1% (from 8.33 to 8.94 GHz), and 13.9% (from 9.74 to 11.19 GHz). Moreover, the measured maximum realized gain is 7.05 dBi. These features make the proposed antenna an attractive candidate for various wireless communication systems.
Suggested Citation
Mohamed Elhefnawy & Kyoung-Hun Kim & Wang-Sang Lee, 2025.
"Mathematical modeling and characteristic mode analysis for investigating the bandwidth and radiation pattern performance of an ACPW microstrip antenna,"
Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 39(3), pages 229-250, February.
Handle:
RePEc:taf:tewaxx:v:39:y:2025:i:3:p:229-250
DOI: 10.1080/09205071.2024.2440746
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tewaxx:v:39:y:2025:i:3:p:229-250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tewa .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.