IDEAS home Printed from https://ideas.repec.org/a/taf/tewaxx/v33y2019i5p541-556.html
   My bibliography  Save this article

Modeling apparent camouflage-pattern color using segment-weighted spectra

Author

Listed:
  • Scott Ramsey
  • Troy Mayo
  • Christopher A. Howells
  • Andrew Shabaev
  • Samuel G. Lambrakos

Abstract

Camouflage patterns for military applications, typically upon base materials such as dyed fabrics, consist of highly detailed camouflage patternings that are characterized by combined refectance spectra. The complexity of these camouflage patterns establishes a need for modeling camouflage-pattern reflectance for pattern evaluation as a function of distance. A metric for pattern evaluation is the apparent-camouflage-pattern reflectance spectrum, which is the total reflectance due to all contributions from component segments, within a wavelength range of interest, for light reflected from sufficiently large fabric samples (≥1m2), as a function of standoff distance. This follows in that camouflage patterns tend to lose contributions to the total reflectance from component segments, having less coverage, with increasing standoff distance. Eventually, with increasing distance, reflectance of pattern segments having more coverage combine to produce the “apparent spectrum” of the camouflage pattern at far field. The physical characteristics of camouflage-pattern reflectance spectra are based on far-field and diffuse scattering properties of electromagnetic waves. Accordingly, a modeling approach can be developed to simulate camouflage-pattern spectra using diffuse-reflectance theory, which is based on decomposition of camouflage-pattern reflectance with respect to component segments of camouflage patterns. This paper presents a modeling approach and prototype simulations of camouflage-pattern reflectance within the visible range of wavelengths, which are relevant for evaluating camouflage fabrics with respect to realistic field conditions. A significant aspect of this modeling approach is that it can be extended for simulation of a wide range of factors influencing detection of camouflaged targets.

Suggested Citation

  • Scott Ramsey & Troy Mayo & Christopher A. Howells & Andrew Shabaev & Samuel G. Lambrakos, 2019. "Modeling apparent camouflage-pattern color using segment-weighted spectra," Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 33(5), pages 541-556, March.
  • Handle: RePEc:taf:tewaxx:v:33:y:2019:i:5:p:541-556
    DOI: 10.1080/09205071.2018.1561331
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09205071.2018.1561331
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09205071.2018.1561331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tewaxx:v:33:y:2019:i:5:p:541-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tewa .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.