IDEAS home Printed from https://ideas.repec.org/a/taf/tewaxx/v27y2013i13p1589-1601.html
   My bibliography  Save this article

Relation between the propagator matrix of geodesic deviation and the second-order derivatives of the characteristic function

Author

Listed:
  • Luděk Klimeš

Abstract

In the Finsler geometry, which is a generalization of the Riemann geometry, the metric tensor also depends on the direction of propagation. The basics of the Finsler geometry were formulated by William Rowan Hamilton in 1832. Hamilton’s formulation is based on the first-order partial differential Hamilton–Jacobi equations for the characteristic function which represents the distance between two points. The characteristic function and geodesics together with the geodesic deviation in the Finsler space can be calculated efficiently by Hamilton’s method. The Hamiltonian equations of geodesic deviation are considerably simpler than the Riemannian or Finslerian equations of geodesic deviation. The linear ordinary differential equations of geodesic deviation may serve to calculate geodesic deviations, amplitudes of waves and the second-order spatial derivatives of the characteristic function or action. The propagator matrix of geodesic deviation contains all the linearly independent solutions of the equations of geodesic deviation. In this paper, we use the Hamiltonian formulation to derive the relation between the propagator matrix of geodesic deviation and the second-order spatial derivatives of the characteristic function in the Finsler geometry. We assume that the Hamiltonian function is a positively homogeneous function of the second degree with respect to the spatial gradient of the characteristic function, which corresponds to the Riemannian or Finslerian equations of geodesics and of geodesic deviation. The derived equations, which represent the main result of this paper, are applicable to the Finsler geometry, the Riemann geometry, and their various applications such as general relativity or the high-frequency approximations of wave propagation.

Suggested Citation

  • Luděk Klimeš, 2013. "Relation between the propagator matrix of geodesic deviation and the second-order derivatives of the characteristic function," Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 27(13), pages 1589-1601, September.
  • Handle: RePEc:taf:tewaxx:v:27:y:2013:i:13:p:1589-1601
    DOI: 10.1080/09205071.2013.808595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09205071.2013.808595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09205071.2013.808595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tewaxx:v:27:y:2013:i:13:p:1589-1601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tewa .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.