IDEAS home Printed from https://ideas.repec.org/a/taf/tcybxx/v8y2022i1p67-84.html
   My bibliography  Save this article

A rail detection algorithm for accurate recognition of train fuzzy video

Author

Listed:
  • Bin Wang
  • Zhen Wang
  • Dou Zhao
  • Xuhai Wang

Abstract

The research follows the mainstream physics and network system architecture. Aiming at the problem of poor data processing ability and poor robustness of traditional trajectory detection algorithms, a trajectory detection method that can be accurately extracted from the fuzzy video of a locomotive is proposed. Firstly, in order to ensure the accuracy of rail detection of trains in complex environments and improve the safety of driverless driving, the video image captured by on-board camera is stored as RGB video frame set, and then processed as single-channel greyscale image carrier set; Secondly, after the initial colour and brightness treatment, the redundant and useless noise features in the greyscale image carrier set still exist. After secondary Gaussian filtering and de-noising, canny operator is used to detect the track edge details of interest; Finally, the rail area is taken as the interested target for Hough line detection, the background subtraction method of adaptive mixed Gaussian background modelling is introduced, the structure element function and the morphologyEx theory of morphological transformation function are introduced, and the left and right tracks are fitted after the calculation and judgement of pixel coordinates. Algorithm for visual tracking experiments show that, rail detection algorithm has already meet need to detect rails in low-quality videos recorded by the on-board cameras of different models of trains at different speed. It not only can process large quantity of data from the on-board camera videos in real time, but also can accurately detect the target rails adaptively where rail conditions are complex with obstructive objects, which shows that this algorithm has very robust performance.

Suggested Citation

  • Bin Wang & Zhen Wang & Dou Zhao & Xuhai Wang, 2022. "A rail detection algorithm for accurate recognition of train fuzzy video," Cyber-Physical Systems, Taylor & Francis Journals, vol. 8(1), pages 67-84, January.
  • Handle: RePEc:taf:tcybxx:v:8:y:2022:i:1:p:67-84
    DOI: 10.1080/23335777.2021.1879277
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23335777.2021.1879277
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23335777.2021.1879277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcybxx:v:8:y:2022:i:1:p:67-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcyb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.