IDEAS home Printed from https://ideas.repec.org/a/taf/tcybxx/v7y2021i4p197-220.html
   My bibliography  Save this article

An Optimal Intrusion Detection System using GWO-CSA-DSAE Model

Author

Listed:
  • Pankaj Kumar Keserwani
  • Mahesh Chandra Govil
  • Emmanuel S. Pilli

Abstract

In the high demand of the cloud computing environment, intrusion detection in a cloud network playing a big role in maintaining the faith of the client(s). Due to the increasing complexity of the cloud environment, the existing approaches which use the conventional neural networks are not able to utilise the relevant information from the network traffic, which leads to a low detection rate. This reduces the stability of the existing approaches in this changing environment. In this paper, an anomaly-based cloud intrusion detection system (IDS) is proposed for finding the intrusions in a cloud network. The proposed system uses a hybrid metaheuristic algorithm for feature selection and a deep learning approach for classification. For feature selection, grey wolf optimisation (GWO) is hybrid with a crow search algorithm (CSA), which extracts relevant features from the cloud network connection to be processed more effectively in the deep learning classifier section. A deep sparse auto-encoder (DSAE) is employed for the classification purpose. For the performance comparison, the considered metrics are accuracy, precision, recall or detection rate (DR), and F1 Score. Three publically well-known available datasets namely NSL-KDD, UNSW-NB15, and CICIDS 2017 have been considered for analysing the performance of the proposed GWO-CSA-DSAE model for intrusion detection in a cloud network. The experimental results of the proposed model have been compared with the results of existing recent approaches in the case of binary classification and multi-class classification. It is found that GWO-CSA-DSAE model is better for intrusion detection, which is the proposed model for intrusion detection in a cloud network.

Suggested Citation

  • Pankaj Kumar Keserwani & Mahesh Chandra Govil & Emmanuel S. Pilli, 2021. "An Optimal Intrusion Detection System using GWO-CSA-DSAE Model," Cyber-Physical Systems, Taylor & Francis Journals, vol. 7(4), pages 197-220, October.
  • Handle: RePEc:taf:tcybxx:v:7:y:2021:i:4:p:197-220
    DOI: 10.1080/23335777.2020.1811383
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23335777.2020.1811383
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23335777.2020.1811383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Alzaqebah & Ibrahim Aljarah & Omar Al-Kadi & Robertas Damaševičius, 2022. "A Modified Grey Wolf Optimization Algorithm for an Intrusion Detection System," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    2. Ali Alzahrani & Theyazn H. H. Aldhyani, 2023. "Design of Efficient Based Artificial Intelligence Approaches for Sustainable of Cyber Security in Smart Industrial Control System," Sustainability, MDPI, vol. 15(10), pages 1-29, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcybxx:v:7:y:2021:i:4:p:197-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcyb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.