IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v8y2008isup1ps108-s124.html
   My bibliography  Save this article

Back-casting analysis for 70% emission reduction in Japan by 2050

Author

Listed:
  • JUNICHI FUJINO
  • GO HIBINO
  • TOMOKI EHARA
  • YUZURU MATSUOKA
  • TOSHIHIKO MASUI
  • MIKIKO KAINUMA

Abstract

This article envisions a future in which advances in technology and urban development have transformed Japanese society by 2050, resulting in significant greenhouse gas reductions. Pathways leading Japan towards a low-carbon society are calculated using a scenario approach based on 'back-casting' techniques. It is possible to reach a 70% reduction in CO 2 emissions through a combination of demand-side and supply-side actions. On the demand side, reductions of 40-45% are possible through efficiency improvements, decreased population and the more rational use of energy despite increased energy demands arising in certain sectors. On the supply side, CO 2 emissions can be reduced through a combination of the appropriate choice of low-carbon energy sources (including carbon capture and storage) and improving energy efficiency. The estimated direct annual cost of technology to achieve this by 2050 is 6.7-9.8 trillion yen, approximately 1% of the estimated 2050 GDP. However, this excludes costs involved in infrastructure investments with aims other than climate policy (e.g. strengthening international competitiveness, improving security, enhancing urban development, and reinforcing energy). To avoid investing in its current high-carbon-emitting infrastructure, Japan must develop long-term strategies to create the necessary technological and societal innovations and to channel the appropriate financial resources for intensive economy-wide change, such as development of land, urban areas, and buildings, improvements in industrial structures, and new technologies.

Suggested Citation

  • Junichi Fujino & Go Hibino & Tomoki Ehara & Yuzuru Matsuoka & Toshihiko Masui & Mikiko Kainuma, 2008. "Back-casting analysis for 70% emission reduction in Japan by 2050," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 108-124, December.
  • Handle: RePEc:taf:tcpoxx:v:8:y:2008:i:sup1:p:s108-s124
    DOI: 10.3763/cpol.2007.0491
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3763/cpol.2007.0491
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.3763/cpol.2007.0491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Vuuren, Detlef P. & Stehfest, Elke & den Elzen, Michel G.J. & van Vliet, Jasper & Isaac, Morna, 2010. "Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100," Energy Economics, Elsevier, vol. 32(5), pages 1105-1120, September.
    2. Nick Eyre, 2013. "Decentralization of governance in the low-carbon transition," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 27, pages 581-597, Edward Elgar Publishing.
    3. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    4. Oshiro, Ken & Fujimori, Shinichiro & Ochi, Yuki & Ehara, Tomoki, 2021. "Enabling energy system transition toward decarbonization in Japan through energy service demand reduction," Energy, Elsevier, vol. 227(C).
    5. Dubois, Antoine & Dumas, Jonathan & Thiran, Paolo & Limpens, Gauthier & Ernst, Damien, 2023. "Multi-objective near-optimal necessary conditions for multi-sectoral planning," Applied Energy, Elsevier, vol. 350(C).
    6. Ashina, Shuichi & Fujino, Junichi & Masui, Toshihiko & Ehara, Tomoki & Hibino, Go, 2012. "A roadmap towards a low-carbon society in Japan using backcasting methodology: Feasible pathways for achieving an 80% reduction in CO2 emissions by 2050," Energy Policy, Elsevier, vol. 41(C), pages 584-598.
    7. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.
    8. Oshiro, Ken & Masui, Toshihiko, 2015. "Diffusion of low emission vehicles and their impact on CO2 emission reduction in Japan," Energy Policy, Elsevier, vol. 81(C), pages 215-225.
    9. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.
    10. Steve Pye & Christophe McGlade & Chris Bataille & Gabrial Anandarajah & Amandine Denis-Ryan & Vladimir Potashnikov, 2016. "Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 92-109, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:8:y:2008:i:sup1:p:s108-s124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.