Author
Listed:
- Vittorio Lingiardi
- Nicola Carone
- Giovanni Semeraro
- Cataldo Musto
- Marilisa D’Amico
- Silvia Brena
Abstract
Though there are currently no statistics offering a global overview of online hate speech, both social networking platforms and organisations that combat hate speech have recognised that prevention strategies are needed to address this negative online phenomenon. While most cases of online hate speech target individuals on the basis of ethnicity and nationality, incitements to hatred on the basis of religion, class, gender and sexual orientation are increasing. This paper reports the findings of the ‘Italian Hate Map’ project, which used a lexicon-based method of semantic content analysis to extract 2,659,879 Tweets (from 879,428 Twitter profiles) over a period of 7 months; 412,716 of these Tweets contained negative terms directed at one of the six target groups. In the geolocalized Tweets, women were the most insulted group, having received 71,006 hateful Tweets (60.4% of the negative geolocalized tweets), followed by immigrants (12,281 tweets, 10.4%), gay and lesbian persons (12,140 tweets, 10.3%), Muslims (7,465 tweets, 6.4%), Jews (7,465 tweets, 6.4%) and disabled persons (7,230 tweets, 6.1%). The findings provide a real-time snapshot of community behaviours and attitudes against social, ethnic, sexual and gender minority groups that can be used to inform intolerance prevention campaigns on both local and national levels.
Suggested Citation
Vittorio Lingiardi & Nicola Carone & Giovanni Semeraro & Cataldo Musto & Marilisa D’Amico & Silvia Brena, 2020.
"Mapping Twitter hate speech towards social and sexual minorities: a lexicon-based approach to semantic content analysis,"
Behaviour and Information Technology, Taylor & Francis Journals, vol. 39(7), pages 711-721, July.
Handle:
RePEc:taf:tbitxx:v:39:y:2020:i:7:p:711-721
DOI: 10.1080/0144929X.2019.1607903
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tbitxx:v:39:y:2020:i:7:p:711-721. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tbit .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.