IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v13y2018i4p473-489.html
   My bibliography  Save this article

Estimation and testing for a partially linear single-index spatial regression model

Author

Listed:
  • Yan Sun
  • Yueqin Wu

Abstract

Observations recorded on ‘locations’ usually exhibit spatial dependence. In an effort to take into account both the spatial dependence and the possible underlying non-linear relationship, a partially linear single-index spatial regression model is proposed. This paper establishes the estimators of the unknowns. Moreover, it builds a generalized F-test to determine whether or not the data provide evidence on using linear settings in empirical studies. Their asymptotic properties are derived. Monte Carlo simulations indicate that the estimators and test statistic perform well. The analysis of Chinese house price data shows the existence of both spatial dependence and a non-linear relationship.

Suggested Citation

  • Yan Sun & Yueqin Wu, 2018. "Estimation and testing for a partially linear single-index spatial regression model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(4), pages 473-489, October.
  • Handle: RePEc:taf:specan:v:13:y:2018:i:4:p:473-489
    DOI: 10.1080/17421772.2018.1506150
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2018.1506150
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2018.1506150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyong Chen & Jianbao Chen, 2022. "Bayesian analysis of partially linear, single-index, spatial autoregressive models," Computational Statistics, Springer, vol. 37(1), pages 327-353, March.
    2. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    3. Cheng, Suli & Chen, Jianbao, 2023. "GMM estimation of partially linear additive spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:13:y:2018:i:4:p:473-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.