IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2019y2019i1p1-31.html
   My bibliography  Save this article

Periodic threshold-type dividend strategy in the compound Poisson risk model

Author

Listed:
  • Eric C. K. Cheung
  • Zhimin Zhang

Abstract

In this paper, the compound Poisson risk model is considered. Inspired by Albrecher, Cheung, & Thonhauser. [(2011b). Randomized observation periods for the compound Poisson risk model: dividend. ASTIN Bulletin 41(2), 645–672], it is assumed that the insurer observes its surplus level periodically to decide on dividend payments at the arrival times of an Erlang(n) renewal process. If the observed surplus is larger than the maximum of a threshold b and the last observed (post-dividend) level, then a fraction of the excess is paid as a lump sum dividend. Ruin is declared when the observed surplus is negative. In this proposed periodic threshold-type dividend strategy, the insurer can have a ruin probability of less than one (as opposed to the periodic barrier strategy). The expected discounted dividends before ruin (denoted by V) will be analyzed. For arbitrary claim distribution, the general solution of V is derived. More explicit result for V is presented when claims have rational Laplace transform. Numerical examples are provided to illustrate the effect of randomized observations on V and the optimization of V with respect to b. When claims are exponential, convergence to the traditional threshold strategy is shown as the inter-observation times tend to zero.

Suggested Citation

  • Eric C. K. Cheung & Zhimin Zhang, 2019. "Periodic threshold-type dividend strategy in the compound Poisson risk model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(1), pages 1-31, January.
  • Handle: RePEc:taf:sactxx:v:2019:y:2019:i:1:p:1-31
    DOI: 10.1080/03461238.2018.1481454
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2018.1481454
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2018.1481454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    2. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2019:y:2019:i:1:p:1-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.