Author
Listed:
- Torsten Kleinow
- Stephen J. Richards
Abstract
The projection of mortality rates is an essential part of valuing liabilities in life insurance portfolios and pension schemes. An important tool for risk management and solvency purposes is a stochastic projection model. We show that ARIMA models can be better representations of mortality time-series than simple random-walk models. We also consider the issue of parameter risk in time-series models from the point of view of an insurer using them for regulatory risk reporting – formulae are given for decomposing overall risk into undiversifiable trend risk (parameter uncertainty) and diversifiable volatility. Particular attention is given to the contrasts in how academic researchers might view these models and how insurance regulators and practitioners in life offices might use them. Using a bootstrap method we find that, while certain kinds of parameter risk are negligible, others are too material to ignore. We also find that an objective model selection criterion, such as goodness of fit to past data, can result in the selection of a model with unstable parameter values. While this aspect of the model is superficially undesirable, it also leads to slightly higher capital requirements and thus makes the model of keen interest to regulators. Our conclusions have relevance to insurers using value-at-risk capital assessments in the European Union under Solvency II, but also territories using conditional tail expectations such as Australia, Canada and Switzerland.
Suggested Citation
Torsten Kleinow & Stephen J. Richards, 2017.
"Parameter risk in time-series mortality forecasts,"
Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(9), pages 804-828, October.
Handle:
RePEc:taf:sactxx:v:2017:y:2017:i:9:p:804-828
DOI: 10.1080/03461238.2016.1255655
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2017:y:2017:i:9:p:804-828. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.