IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2016y2016i4p319-337.html
   My bibliography  Save this article

Parisian ruin probability with a lower ultimate bankrupt barrier

Author

Listed:
  • Irmina Czarna

Abstract

The paper deals with a ruin problem, where there is a Parisian delay and a lower ultimate bankrupt barrier. In this problem, we will say that a risk process get ruined when it stays below zero longer than a fixed amount of time ζ > 0 or goes below a fixed level −a. We focus on a general spectrally negative Lévy insurance risk process. For this class of processes, we identify the Laplace transform of the ruin probability in terms of so-called q-scale functions. We find its Cramér-type and convolution-equivalent asymptotics when reserves tends to infinity. Finally, we analyze few explicit examples.

Suggested Citation

  • Irmina Czarna, 2016. "Parisian ruin probability with a lower ultimate bankrupt barrier," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(4), pages 319-337, April.
  • Handle: RePEc:taf:sactxx:v:2016:y:2016:i:4:p:319-337
    DOI: 10.1080/03461238.2014.926288
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2014.926288
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2014.926288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Duy Phat & Borovkov, Konstantin, 2023. "Parisian ruin with random deficit-dependent delays for spectrally negative Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 72-81.
    2. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2016:y:2016:i:4:p:319-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.