IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2014y2014i1p72-91.html
   My bibliography  Save this article

Optimal reinsurance under general law-invariant risk measures

Author

Listed:
  • K.C. Cheung
  • K.C.J. Sung
  • S.C.P. Yam
  • S.P. Yung

Abstract

In recent years, general risk measures play an important role in risk management in both finance and insurance industry. As a consequence, there is an increasing number of research on optimal reinsurance decision problems using risk measures beyond the classical expected utility framework. In this paper, we first show that the stop-loss reinsurance is an optimal contract under law-invariant convex risk measures via a new simple geometric argument. A similar approach is then used to tackle the same optimal reinsurance problem under Value at Risk and Conditional Tail Expectation; it is interesting to note that, instead of stop-loss reinsurances, insurance layers serve as the optimal solution. These two results highlight that law-invariant convex risk measure is better and more robust, in the sense that the corresponding optimal reinsurance still provides the protection coverage against extreme loss irrespective to the potential increment of its probability of occurrence, to expected larger claim than Value at Risk and Conditional Tail Expectation which are more commonly used. Several illustrative examples will be provided.

Suggested Citation

  • K.C. Cheung & K.C.J. Sung & S.C.P. Yam & S.P. Yung, 2014. "Optimal reinsurance under general law-invariant risk measures," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(1), pages 72-91.
  • Handle: RePEc:taf:sactxx:v:2014:y:2014:i:1:p:72-91
    DOI: 10.1080/03461238.2011.636880
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2011.636880
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2011.636880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    2. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    3. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    4. Wenhua Lv & Linxiao Wei, 2023. "Distributionally Robust Reinsurance with Glue Value-at-Risk and Expected Value Premium," Mathematics, MDPI, vol. 11(18), pages 1-23, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2014:y:2014:i:1:p:72-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.