IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2014y2014i1p1-31.html
   My bibliography  Save this article

Computing the finite-time expected discounted penalty function for a family of Lévy risk processes

Author

Listed:
  • Alexey Kuznetsov
  • Manuel Morales

Abstract

Ever since the first introduction of the expected discounted penalty function (EDPF), it has been widely acknowledged that it contains information that is relevant from a risk management perspective. Expressions for the EDPF are now available for a wide range of models, in particular for a general class of Lévy risk processes. Yet, in order to capitalize on this potential for applications, these expressions must be computationally tractable enough as to allow for the evaluation of associated risk measures such as Value at Risk (VaR) or Conditional Value at Risk (CVaR). Most of the models studied so far offer few interesting examples for which computation of the associated EDPF can be carried out to the last instances where evaluation of risk measures is possible. Another drawback of existing examples is that the expressions are available for an infinite-time horizon EDPF only. Yet, realistic applications would require the computation of an EDPF over a finite-time horizon. In this paper we address these two issues by studying examples of risk processes for which numerical evaluation of the EDPF can be readily implemented. These examples are based on the recently introduced meromorphic processes, including the beta and theta families of Lévy processes, whose construction is tailor-made for computational ease. We provide expressions for the EDPF associated with these processes and we discuss in detail how a finite-time horizon EDPF can be computed for these families. We also provide numerical examples for different choices of parameters in order to illustrate how ruin-based risk measures can be computed for these families of Lévy risk processes.

Suggested Citation

  • Alexey Kuznetsov & Manuel Morales, 2014. "Computing the finite-time expected discounted penalty function for a family of Lévy risk processes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2014(1), pages 1-31.
  • Handle: RePEc:taf:sactxx:v:2014:y:2014:i:1:p:1-31
    DOI: 10.1080/03461238.2011.627747
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2011.627747
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2011.627747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2014:y:2014:i:1:p:1-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.