IDEAS home Printed from https://ideas.repec.org/a/taf/sactxx/v2012y2012i3p153-182.html
   My bibliography  Save this article

A unifying approach to the analysis of business with random gains

Author

Listed:
  • Eric Cheung

Abstract

In this paper, we consider a stochastic model in which a business enterprise is subject to constant rate of expenses over time and gains which are random in both time and amount. Inspired by Albrecher & Boxma (2004), it is assumed in general that the size of a given gain has an impact on the time until the next gain. Under such a model, we are interested in various quantities related to the survival of the business after default, which include: (i) the fair price of a perpetual insurance which pays the expenses whenever the available capital reaches zero; (ii) the probability of recovery by the first gain after default if money is borrowed at the time of default; and (iii) the Laplace transforms of the time of recovery and the first duration of negative capital. To this end, a function resembling the so-called Gerber–Shiu function (Gerber & Shiu (1998)) commonly used in insurance analysis is proposed. The function's general structure is studied via the use of defective renewal equations, and its applications to the evaluation of the above-mentioned quantities are illustrated. Exact solutions are derived in the independent case by assuming that either the inter-arrival times or the gains have an arbitrary distribution. A dependent example is also considered and numerical illustrations follow.

Suggested Citation

  • Eric Cheung, 2012. "A unifying approach to the analysis of business with random gains," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2012(3), pages 153-182.
  • Handle: RePEc:taf:sactxx:v:2012:y:2012:i:3:p:153-182
    DOI: 10.1080/03461238.2010.490027
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03461238.2010.490027
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03461238.2010.490027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng, Ye & Zhang, Zhimin, 2023. "On a time-changed Lévy risk model with capital injections and periodic observation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 290-314.
    2. Nguyen, Duy Phat & Borovkov, Konstantin, 2023. "Parisian ruin with random deficit-dependent delays for spectrally negative Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 72-81.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:sactxx:v:2012:y:2012:i:3:p:153-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/sact .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.